skip to main content


Search for: All records

Creators/Authors contains: "Morlon, Hélène"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The extraordinary number of species in the tropics when compared to the extra-tropics is probably the most prominent and consistent pattern in biogeography, suggesting that overarching processes regulate this diversity gradient. A major challenge to characterizing which processes are at play relies on quantifying how the frequency and determinants of tropical and extra-tropical speciation, extinction, and dispersal events shaped evolutionary radiations. We address this question by developing and applying spatiotemporal phylogenetic and paleontological models of diversification for tetrapod species incorporating paleoenvironmental variation. Our phylogenetic model results show that area, energy, or species richness did not uniformly affect speciation rates across tetrapods and dispute expectations of a latitudinal gradient in speciation rates. Instead, both neontological and fossil evidence coincide in underscoring the role of extra-tropical extinctions and the outflow of tropical species in shaping biodiversity. These diversification dynamics accurately predict present-day levels of species richness across latitudes and uncover temporal idiosyncrasies but spatial generality across the major tetrapod radiations.

     
    more » « less
    Free, publicly-accessible full text available May 16, 2024
  2. Abstract

    Current understanding of ecological and evolutionary processes underlying island biodiversity is heavily shaped by empirical data from plants and birds, although arthropods comprise the overwhelming majority of known animal species, and as such can provide key insights into processes governing biodiversity. Novel high throughput sequencing (HTS) approaches are now emerging as powerful tools to overcome limitations in the availability of arthropod biodiversity data, and hence provide insights into these processes. Here, we explored how these tools might be most effectively exploited for comprehensive and comparable inventory and monitoring of insular arthropod biodiversity. We first reviewed the strengths, limitations and potential synergies among existing approaches of high throughput barcode sequencing. We considered how this could be complemented with deep learning approaches applied to image analysis to study arthropod biodiversity. We then explored how these approaches could be implemented within the framework of an island Genomic Observatories Network (iGON) for the advancement of fundamental and applied understanding of island biodiversity. To this end, we identified seven island biology themes at the interface of ecology, evolution and conservation biology, within which collective and harmonized efforts in HTS arthropod inventory could yield significant advances in island biodiversity research.

     
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  3. Abstract Background

    MacArthur and Wilson's theory of island biogeography has been a foundation for obtaining testable predictions from models of community assembly and for developing models that integrate across scales and disciplines. Historically, however, these developments have focused on integration across ecological and macroevolutionary scales and on predicting patterns of species richness, abundance distributions, trait data and/or phylogenies. The distribution of genetic variation across species within a community is an emerging pattern that contains signatures of past population histories, which might provide an historical lens for the study of contemporary communities. As intraspecific genetic diversity data become increasingly available at the scale of entire communities, there is an opportunity to integrate microevolutionary processes into our models, moving towards development of a genetic theory of island biogeography.

    Motivation/goal

    We aim to promote the development of process‐based biodiversity models that predict community genetic diversity patterns together with other community‐scale patterns. To this end, we review models of ecological, microevolutionary and macroevolutionary processes that are best suited to the creation of unified models, and the patterns that these predict. We then discuss ongoing and potential future efforts to unify models operating at different organizational levels, with the goal of predicting multidimensional community‐scale data including a genetic component.

    Main conclusions

    Our review of the literature shows that despite recent efforts, further methodological developments are needed, not only to incorporate the genetic component into existing island biogeography models, but also to unify processes across scales of biological organization. To catalyse these developments, we outline two potential ways forward, adopting either a top‐down or a bottom‐up approach. Finally, we highlight key ecological and evolutionary questions that might be addressed by unified models including a genetic component and establish hypotheses about how processes across scales might impact patterns of community genetic diversity.

     
    more » « less
  4. Building the Tree of Life (ToL) is a major challenge of modern biology, requiring advances in cyberinfrastructure, data collection, theory, and more. Here, we argue that phylogenomics stands to benefit by embracing the many heterogeneous genomic signals emerging from the first decade of large-scale phylogenetic analysis spawned by high-throughput sequencing (HTS). Such signals include those most commonly encountered in phylogenomic datasets, such as incomplete lineage sorting, but also those reticulate processes emerging with greater frequency, such as recombination and introgression. Here we focus specifically on how phylogenetic methods can accommodate the heterogeneity incurred by such population genetic processes; we do not discuss phylogenetic methods that ignore such processes, such as concatenation or supermatrix approaches or supertrees. We suggest that methods of data acquisition and the types of markers used in phylogenomics will remain restricted until a posteriori methods of marker choice are made possible with routine whole-genome sequencing of taxa of interest. We discuss limitations and potential extensions of a model supporting innovation in phylogenomics today, the multispecies coalescent model (MSC). Macroevolutionary models that use phylogenies, such as character mapping, often ignore the heterogeneity on which building phylogenies increasingly rely and suggest that assimilating such heterogeneity is an important goal moving forward. Finally, we argue that an integrative cyberinfrastructure linking all steps of the process of building the ToL, from specimen acquisition in the field to publication and tracking of phylogenomic data, as well as a culture that values contributors at each step, are essential for progress.

     
    more » « less
  5. Abstract

    Understanding why species richness peaks along the Andes is a fundamental question in the study of Neotropical biodiversity. Several biogeographic and diversification scenarios have been proposed in the literature, but there is confusion about the processes underlying each scenario, and assessing their relative contribution is not straightforward. Here, we propose to refine these scenarios into a framework which evaluates four evolutionary mechanisms: higher speciation rate in the Andes, lower extinction rates in the Andes, older colonization times and higher colonization rates of the Andes from adjacent areas. We apply this framework to a species‐rich subtribe of Neotropical butterflies whose diversity peaks in the Andes, the Godyridina (Nymphalidae: Ithomiini). We generated a time‐calibrated phylogeny of the Godyridina and fitted time‐dependent diversification models. Using trait‐dependent diversification models and ancestral state reconstruction methods we then compared different biogeographic scenarios. We found strong evidence that the rates of colonization into the Andes were higher than the other way round. Those colonizations and the subsequent local diversification at equal rates in the Andes and in non‐Andean regions mechanically increased the species richness of Andean regions compared to that of non‐Andean regions (‘species‐attractor’ hypothesis). We also found support for increasing speciation rates associated with Andean lineages. Our work highlights the importance of the Andean slopes in repeatedly attracting non‐Andean lineages, most likely as a result of the diversity of habitats and/or host plants. Applying this analytical framework to other clades will bring important insights into the evolutionary mechanisms underlying the most species‐rich biodiversity hotspot on the planet.

     
    more » « less